

Computer Science bridging work

Task 1: Understanding Basic Data Types (Approx. 2 Hours)

Objective: To understand what data types are, why they are important, and the common types used in

computing.

Activities:

1. Research & Reading (1 hour):

o What are Data Types? Begin by researching what "data types" mean in the context of

computer science. Why do computers need to know the type of data they are handling?

o Common Data Types: Investigate the following fundamental data types. For each,

understand its purpose, the kind of data it stores, and typical examples:

▪ Integer: Whole numbers (e.g., 5, -100, 0)

▪ Real/Float: Numbers with decimal points (e.g., 3.14, -0.5, 99.99)

▪ Boolean: True/False values

▪ Character: A single letter, number, or symbol (e.g., 'A', '7', '$')

▪ String: A sequence of characters (e.g., "Hello World", "Computer Science")

o Resources: Use online resources like BBC Bitesize, Computer Science education websites,

or introductory programming tutorials (focus on the concepts, not the code syntax yet).

2. Application & Reflection (1 hour):

o Real-World Examples: For each data type listed above, think of at least three real-world

scenarios or pieces of information where that data type would be the most appropriate

choice. For example, "The number of students in a class" would be an Integer.

o Data Type Selection: Imagine you are designing a simple program for a library. For each

piece of information below, identify the most suitable data type and explain why:

▪ Book Title

▪ Number of copies of a book

▪ Price of a book

▪ Is the book currently available (Yes/No)?

▪ The first initial of the author's name

▪ The ISBN (International Standard Book Number)

Task 2: The Binary Number System (Approx. 3 Hours)

Objective: To understand how computers represent numbers using binary and perform basic conversions.

Activities:

1. Research & Reading (1.5 hours):

o Why Binary? Discover why computers use the binary (base-2) system, consisting only of

0s and 1s, instead of the denary (base-10) system we use daily.

o Bits and Bytes: Understand the terms "bit" (binary digit) and "byte" (typically 8 bits).

o Denary to Binary Conversion: Learn how to convert denary (base-10) numbers into 8-bit

binary numbers. Practice with numbers up to 255.

o Binary to Denary Conversion: Learn how to convert 8-bit binary numbers back into

denary.

o Binary Addition: Understand the basic rules of binary addition (0+0=0, 0+1=1, 1+0=1,

1+1=10 [0 carry 1]). Practice with simple 4-bit additions.

o Introduction to Hexadecimal (Optional but Recommended): Briefly research hexadecimal

(base-16) and its relationship to binary (e.g., how 4 binary bits can be represented by one

hex digit). You don't need to master conversions, just understand its purpose.

2. Practice Exercises (1.5 hours):

o Conversion Practice:

▪ Convert the following denary numbers to 8-bit binary: 10, 42, 128, 200, 75.

▪ Convert the following 8-bit binary numbers to denary: 00001101, 00101010,

10000000, 11110000, 01010101.

o Binary Addition:

▪ Perform the following binary additions (show your working):

▪ 0101 + 0011

▪ 1010 + 0101

▪ 1111 + 0001

o Self-Correction: Use online binary converters to check your answers.

Task 3: Core Programming Concepts (Approx. 4 Hours)

Objective: To grasp fundamental programming constructs that are common to almost all programming

languages. You will use pseudocode (a simplified, language-agnostic way to describe algorithms) and

flowcharts.

Activities:

1. Variables and Constants (0.5 hours):

o Research: Understand the difference between a variable (a named storage location

whose value can change) and a constant (a named storage location whose value remains

fixed).

o Pseudocode Practice: Write pseudocode to declare a variable called score and initialize it

to 0. Then, add 10 to score. Declare a constant called PI and set its value to 3.14159.

2. Operators (0.5 hours):

o Research: Explore different types of operators:

▪ Arithmetic: +, -, *, /, MOD (remainder), DIV (integer division).

▪ Relational/Comparison: >, <, >=, <=, == (equals), != (not equals).

▪ Logical: AND, OR, NOT.

o Pseudocode Practice: Write pseudocode examples demonstrating the use of each type of

operator.

3. Input and Output (0.5 hours):

o Research: How do programs get data from a user (input) and display results (output)?

o Pseudocode Practice: Write pseudocode to:

▪ Ask the user for their name and store it in a variable.

▪ Display a greeting message using the stored name (e.g., "Hello, [Name]!").

4. Control Structures (2 hours):

o Sequence: Understand that instructions are executed one after another in order.

o Selection (IF/ELSE, CASE/SWITCH) (1 hour):

▪ Research: Learn how programs make decisions based on conditions.

▪ Pseudocode Practice:

▪ Write pseudocode to check if a user's age is 18 or over. If it is, display

"You are an adult." Otherwise, display "You are a minor."

▪ Write pseudocode using a CASE (or SWITCH) structure to display a

different message based on a user's input of 'A', 'B', or 'C' (e.g., 'A' ->

"Excellent", 'B' -> "Good", 'C' -> "Average").

o Iteration/Loops (FOR, WHILE) (1 hour):

▪ Research: Learn how programs repeat instructions.

▪ Pseudocode Practice:

▪ Write pseudocode using a FOR loop to print numbers from 1 to 5.

▪ Write pseudocode using a WHILE loop to keep asking the user for a

password until they enter "secret".

5. Subroutines/Functions (0.5 hours):

o Research: Understand the concept of breaking down a large program into smaller,

reusable blocks of code (subroutines, functions, procedures). Why is this useful?

o Pseudocode Practice: Write pseudocode for a simple function called CalculateArea that

takes length and width as inputs and returns their product.

Task 4: Putting It Together - Mini-Challenge (Approx. 1 Hour)

Objective: To apply all the learned concepts to solve a small problem using pseudocode and/or

flowcharts.

Challenge: Create a pseudocode algorithm for a simple program that:

1. Asks the user to enter a temperature in Celsius.

2. Converts the Celsius temperature to Fahrenheit using the formula: F=C×1.8+32.

3. Displays both the original Celsius temperature and the calculated Fahrenheit temperature.

4. Additionally, if the Fahrenheit temperature is above 80, display "It's hot!", otherwise display "It's

not too hot."

Guidance:

• Think about the data types needed for temperatures.

• Consider the input and output.

• Use arithmetic operators for the conversion.

• Use a selection (IF/ELSE) statement for the temperature message.

• You can also try drawing a flowchart for this problem.

Supporting material
Here are links to relevant videos from the "Craig 'n' Dave" YouTube channel for each of the activities in

the "A-Level Computer Science Pre-Course Tasks" document. Please note that some topics are covered

within broader videos, and I've tried to select the most appropriate ones.

Task 1: Understanding Basic Data Types

• What are Data Types? & Common Data Types (Integer, Real/Float, Character, String, Boolean):

o 72. OCR A Level (H046-H446) SLR13 – 1.4 Primitive data types (This video covers Integers,

Reals/Floats, Chars, Strings, and Booleans.)

o For a more specific look at Strings: AQA A'Level SLR01 Introduction to programming Part 5

– String handling

o For Boolean logic (which underpins the Boolean data type): 2.4 – Boolean logic (This is a

category with multiple videos; focus on the introductory ones.)

o For Characters: 80. AQA GCSE (8525) SLR13 - 3.3 Characters

Task 2: The Binary Number System

• Why Binary?

o CAMBRIDGE IGCSE Topic 1.1 How and why computers use binary to represent all forms of

data

• Bits and Bytes:

o AQA A'Level SLR10 Bits, bytes and unit representation

• Denary to Binary Conversion:

o 15. OCR GCSE (J277) 1.2 Converting between denary & 8 bit binary

• Binary to Denary Conversion:

o The video above for "Denary to Binary Conversion" also covers converting binary back to

denary.

• Binary Addition:

o 16. OCR GCSE (J277) 1.2 Adding two 8 bit binary integers

o 76. OCR A Level (H046-H446) SLR13 – 1.4 Binary addition and subtraction

• Introduction to Hexadecimal:

o Converting Denary to Hexadecimal | OCR GCSE J277

Task 3: Core Programming Concepts

• Variables and Constants:

o CAMBRIDGE IGCSE Topic 8.1 Variables and constants

• Operators (Arithmetic, Relational, Logical):

o 51. AQA GCSE (8525) SLR8 – 3.2 Arithmetic operators (This video covers arithmetic and

comparison operators. For logical operators, refer back to the Boolean logic videos in Task

1.)

• Input and Output:

https://craigndave.org/videos/ocr-alevel-slr13-primitive-data-types/
https://craigndave.org/videos/aqa-alevel-slr01-introduction-to-programming-part-5-string-handling/
https://craigndave.org/videos/aqa-alevel-slr01-introduction-to-programming-part-5-string-handling/
https://craigndave.org/video-categories/slr2-4-boolean-logic/
https://www.youtube.com/watch?v=XSMVSqNa8Mg
https://craigndave.org/videos/cambridge-igcse-topic-1-1-how-and-why-computers-use-binary-to-represent-all-forms-of-data/
https://craigndave.org/videos/cambridge-igcse-topic-1-1-how-and-why-computers-use-binary-to-represent-all-forms-of-data/
https://craigndave.org/videos/aqa-alevel-slr10-bits-bytes-and-unit-representation/
https://craigndave.org/videos/ocr-gcse-j277-slr-1-2-converting-between-denary-and-8-bit-binary/
https://craigndave.org/videos/ocr-gcse-j277-slr-1-2-adding-two-8-bit-binary-integers/
https://craigndave.org/videos/ocr-alevel-slr13-binary-addition-and-subtraction/
https://craigndave.org/videos/ocr-gcse-j277-slr-1-2-converting-between-denary-and-2-digit-hexadecimal/
https://craigndave.org/videos/cambridge-igcse-topic-8-1-variables-and-constants/
https://craigndave.org/videos/gcse-aqa-slr8-the-common-arithmetic-and-comparison-operators/

o A level OCR: SLR03 - Input, output and storage (This is a playlist; look for videos

specifically on input/output concepts rather than just hardware.)

• Control Structures (Sequence, Selection, Iteration):

o Sequence: 63. OCR GCSE (J277) 2.2 The 3 basic programming constructs (This video

introduces all three constructs.)

o Selection (IF/ELSE, CASE/SWITCH): OCR J277 GCSE 2.2.1: Selection

o Iteration/Loops (FOR, WHILE): GCSE Computer Science Python #5 - Iteration (while and

for loops)

• Subroutines/Functions:

o 48. AQA GCSE (8525) SLR8 - 3.2 Introduction to subroutines

https://www.youtube.com/playlist?list=PLCiOXwirraUCQZhirOWfj3ZnkxBnSpq6w
https://craigndave.org/videos/ocr-gcse-j277-slr-2-2-the-use-of-the-three-basic-programming-constructs/
https://www.youtube.com/watch?v=ppx8rqSm8z0
https://www.youtube.com/watch?v=Wtr68mqNXCQ
https://www.youtube.com/watch?v=Wtr68mqNXCQ
https://www.youtube.com/watch?v=aSU3s_Dfw9I

